The Mixing of Markov Chains on Linear Extensions in Practice

نویسندگان

  • Topi Talvitie
  • Teppo Niinimaki
  • Mikko Koivisto
چکیده

We investigate almost uniform sampling from the set of linear extensions of a given partial order. The most efficient schemes stem from Markov chains whose mixing time bounds are polynomial, yet impractically large. We show that, on instances one encounters in practice, the actual mixing times can be much smaller than the worst-case bounds, and particularly so for a novel Markov chain we put forward. We circumvent the inherent hardness of estimating standard mixing times by introducing a refined notion, which admits estimation for moderate-size partial orders. Our empirical results suggest that the Markov chain approach to sample linear extensions can be made to scale well in practice, provided that the actual mixing times can be realized by instance-sensitive bounds or termination rules. Examples of the latter include existing perfect simulation algorithms, whose running times in our experiments follow the actual mixing times of certain chains, albeit with significant overhead.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chains for Linear Extensions , the Two - Dimensional

We study the generation of uniformly distributed linear extensions using Markov chains. In particular we show that monotone coupling from the past can be applied in the case of linear extensions of two-dimensional orders. For width two orders a mixing rate of O(n 3 log n) is proved. We conjecture that this is the mixing rate in the general case and support the conjecture by empirical data. On t...

متن کامل

Markov Chains for Promotion Operators

We consider generalizations of Schützenberger’s promotion operator on the set L of linear extensions of a finite poset. This gives rise to a strongly connected graph on L. In earlier work [AKS12], we studied promotion-based Markov chains on these linear extensions which generalizes results on the Tsetlin library. We used the theory of R-trivial monoids in an essential way to obtain explicitly t...

متن کامل

Mixing times of Lozenge Tiling and Card Shuffling Markov Chains

We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, Randall, and Sinclair to generate random tilings of regions by lozenges. For an l×l region we bound the mix...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017